What is climate change?

What is the difference between climate and weather?

CLIMATES OF THE WORLD

What does drive the climate?

CLIMATE CHANGE IS:

Variation in climate over many years,

from decades to millions of years.

CLIMATE CHANGE INCLUDES

EXTREME EVENTS

(frequency and intensity)

Natural causes:

2. Volcanic activity

3. Changes in the Earth's orbit

Human causes:

Pollution

Greenhouse effect

Global warming

What does make this climate change different from past climate changes?

This climate change is happening

FASTER.

Percent of Average Precipitation

April 1, 2001 to August 31, 2001 (A.M.)

www.agr.gc.ca/pfra/drought

Prepared by Agriculture and Agri-Food Canada (PFRA) using data from the Timely Climate Monitoring Network and the many federal and provincial agencies and volunteers that support it.

PRECIPITATION

Annual Total Precipitation 1961 - 1990 . South Saskatchewan River Basin.

Source: Suzan Lapp, 2007. (Normals from Mckenney et al. 2006).

Annual Total Precipitation 1961 - 1990. South Saskatchewan River Basin.

Source: Suzan Lapp, 2007. (Normals from Mckenney et al. 2006).

Annual Total
Precipitation 1961 1990. South
Saskatchewan
River Basin.

Source: Suzan Lapp, 2007. (Normals from Mckenney et al. 2006).

Annual Total
Precipitation 2050.
South
Saskatchewan
River Basin.

Source: Suzan Lapp, 2007. (GCM data from WCRP CMIP3 multimodel database).

Increase in Annual Total Precipitation by 2050

Source: Suzan Lapp, 2007. (GCM data from WCRP CMIP3 multi-model database).

Expected increase in annual total precipitation by 2050:		
Cabri	29 mm.	
Taber	14 mm.	
Stewart Valley	32 mm.	

TEMPERATURE

Annual Mean Temperature 1961-1990. South Saskatchewan River Basin.

Source: Suzan Lapp, 2007. (Normals from Mckenney et al. 2006).

Annual Mean Temperature 1961 -1990. SSRB.

Source: Suzan Lapp, 2007. (Normals from Mckenney et al. 2006).

Annual Mean Temperature Scenario for 2050. Median model: CGCM3.1 T47 B1(2). SSRB.

Source: Suzan Lapp, 2007. (GCM data from WCRP CMIP3 multimodel database).

Increase in Annual Mean Temperature by 2050

Source: Suzan Lapp, 2007. (Normals from Mckenney et al. 2006).

Expected change in annual mean temperature by 2050:	
Cabri	2.31 °C
Taber	2.20 °C
Stewart Valley	2.34°C

CLIMATE MOSITURE INDEX: GROWING SEASON

Climate Moisture Map: May-June-July, 1961-1990 . South Saskatchewan River Basin.

Median: CGCM3.1 T47 B1(2)

Source: Suzan Lapp, 2007. (GCM data from WCRP CMIP3 multi-model database).

May-June-July Climate Moisture Map, 1961 - 1990. South Saskatchewan River Basin.

May-June-July Climate Moisture Map, 2050 . South Saskatchewan River Basin. Median model: CGCM3.1 T47 B1(2). SSRB.

Source: Suzan Lapp, 2007. (GCM data from WCRP CMIP3 multimodel database).

Decrease in Climate Moisture by 2050: Growing Season (May-June-July)

Expected change in May-June-July climate moisture index by 2050:	
Cabri	17.56
Taber	48.88
Stewart Valley	14.93

Vegetative Transition Occurs as the Ecosystem Dries....

Prairie Drainage Basins

Non-contributing drainage area (percent of total basin area) for prairie drainage basins -median annual runoff-

Climate Change Impacts on Rocky Mountain glaciers

Demuth and Pietroniro, 2001

Glacier cover has decreased rapidly in recent years; it now approaches the least extent in the past 10,000 years

A phase of increased stream flow from global warming has past; basins have entered a potentially long-term trend of declining flows

Declining supplies of glacier runoff have serious implications for the adaptive capacity of downstream surface water systems and for trans-boundary water allocation

Courtesy of Dr. David Sauchyn. Prairie Adaptation Research Collaborative.

Courtesy of Dr. David Sauchyn. Prairie Adaptation Research Collaborative.

http://www.parc.ca/ssrb/index.htm

Climate Change and Water

in the

South Saskatchewan River Basin

Courtesy of Dr. David Sauchyn. Prairie Adaptation Research Collaborative.

GCM scenario results, 2039 – 2070, cumulative flows

Courtesy of Dr. David Sauchyn. Prairie Adaptation Research Collaborative.

