

Mapping of Instrumental
Climate Change Trends
&

Modelling Watersheds

Stefan W Kienzle
University of Lethbridge
Department of Geography

Climate and Extreme Weather

Climate change is described using:

- average changes in temperature
- average changes in precipitation.

Most social and economic costs associated with climate change will result from a shift in:

- Frequency of extreme events
- Severity of extreme events

Risk analysis is required

What is the chance of a certain event to happen?

Climate and Extreme Weather

- We have calculated many climate indices for the period 1950 – 2010 for 7000 climate grid cells.
 - /els
- Trends and their significance levels were then computed.
- Soon, we can calculate trends for the period 1950 – 2050.

INTERPOLATED DAILY MAX-MIN TEMPERATURE AND PRECIPITATION (1961-2003)

Collaborative between:

- Environment Canada (data)
- Canada Climate Service (data)
- Natural Resources Canada (interpolation)
- Australian National University (interpolation)

Published by the National Land and Water Information Service (NLWIS).

10 KM CLIMATE GRIDS ("TOWNSHIP GRIDS")

22,280 daily layers for

- Precipitation
- Minimum temperature
- Maximum temperature

Alberta
1950-2010
Change in growing
season length
[in days]

Alberta maps will be created for:

- Many climate indices
- · PET
- Future climates
- Drought indices
- · Crop yields

Variable	Description	Units
Tmax >= threshold temperature	Annual count when the daily maximum temperature >= chosen threshold temperature, e.g. 25°C	Days
Tmax <= threshold temperature	Annual count when the daily maximum temperature <= chosen threshold temperature, e.g. 2°C	
Tmin >= threshold temperature	Annual count when the daily minimum temperature >= chosen threshold temperature, e.g. 5°C	Days
Tmin <= threshold temperature	Annual count when the daily minimum temperature <= chosen threshold temperature, e.g. 0°C	Days
Frost days	Annual count when daily minimum temperature < 0°C	Days
Growing season Length	Annual count between first span of at least 6 days with Tmean >5°C and first span after July -of 6 days with TMean < 5°C	Days
Heat wave days	Count of days in a year that are 5 $^{\circ}$ C higher than during the 1961-1990 period	Days
Ice days	Annual count when daily maximum temperature <0°C	Days
Max Tmax	Monthly maximum value of daily maximum temp	$^{\circ}$ C
Max Tmin	Monthly maximum value of daily minimum temp	$^{\circ}$ C
Min Tmax	Monthly minimum value of daily maximum temp	$^{\circ}$ C
Min Tmin	Monthly minimum value of daily minimum temp	$^{\circ}$ C
Cool nights	Percentage of days when TN<10th percentile	%
Cool days	Percentage of days when TX<10th percentile	%
Warm nights	Percentage of days when TN>90th percentile	%
Warm days	Percentage of days when TX>90th percentile	%
Consecutive dry days	Maximum number of consecutive days with RR<1mm	Days

Variable	Description	Units	
Accumulated precipitation over 5 days	Annual maximum sum of 5-day precipitation	Mm	
Simple precipitation intensity index	Annual fraction of annual precipitation sum divided by the number of precipitation days > 1mm		
Very wet years	Annual total precipitation when above the 1961-1990 period 95 th percentile		
Annual precipitation	Annual sums of daily precipitation	mm	
Warm spell duration indicator	Annual count of days with at least 6 consecutive days when TX>90th percentile		
Cold spell duration indicator	Annual count of days with at least 6 consecutive days when TN<10th percentile		
Diurnal temperature range	Monthly mean difference between TX and TN	°C	
Max 1-day precipitation amount	Monthly maximum 1-day precipitation	mm	
Max 5-day precipitation amount	Monthly maximum consecutive 5-day precipitation	mm	
Simple daily intensity index	Annual total precipitation divided by the number of wet days (defined as precipitation >= 1.0mm) in the year		
Number of heavy precipitation days	Annual count of days when daily precipitation >=10mm	Days	
Number of very heavy precipitation days	Annual count of days when daily precipitation >=20mm	Days	
Number of days above nn mm	Annual count of days when daily precipitation >= nn mm, nn is user defined threshold	Days	
Consecutive wet days	Maximum number of consecutive days with precipitation >= 1mm	mm	
Very wet days	Annual total PRCP when RR>95 th percentile	mm	
	Annual total PRCP when RR>99th percentile	mm	
Annual total wet-day precipitation	Annual total PRCP in wet days (RR>=1mm)	mm	
Growing degree days >=0°C	Annual sum of daily temperatures >= 0°C	°C	
Growing degree days >=5°C	Annual sum of daily temperatures >= 5°C	°C	
Growing degree days >=10°C	Annual sum of daily temperatures >= 10°C	°C	
Beginning day of growing season	First day of span of at least 6 days with Tmean >5°C	°C	
End day of growing season	Last day of span of at least 6 days with Tmean <5°C	°C	

Historical Trend in Growing Season Length

Alberta
1950-2010
Change in growing
season length
[in days]

Alberta maps will be created for:

- Many climate indices
- · PET
- Future climates
- Drought indices
- · Crop yields

TREND IN NUMBER OF FROST DAYS

TREND IN NUMBER OF AT LEAST 5 CONSECUTIVE DAYS WITH TEMPERATURES ABOVE 5°C OVER NORMAL

"Heat Waves"

What is the chance of annual precipitation being over a certain value in Lethbridge?

Impacts of Climate Change

ACRU agro-hydrological modelling system

Multi-purpose
Multi-level
Integrated physical model

- Actual evaporation
- Soil water and groundwater storages
- Snow
- (Glaciers)
- Land cover and abstraction impacts on water resources
- Streamflow at a daily time step.

The ACRU model is used as a <u>translator</u> of climate change and land cover scenarios into hydrological responses.

Water Yield in Alberta

Alberta Water Yield Per Square Kilometer

Excluded / Insufficient Data

ACRU Simulations in:

- Upper North Saskatchewan River
- **Castle River**
- St. Mary's River
- **Beaver Creek**
- Swift Current Creek
- Oldman River
- McLeod River

The watershed associated with Gauss Station 1 (orange in the Figure on the has a nested area of 15 km² and a gro area of 15 km2 (they are the same, as

The watershed associated with Gauging Station 2 has a nested area of 10 km (green), and a gross area of 25 km2

The specific water yield was calculated by dividing the mean annual volume of streamflow produced in a nested watershed (in m³/year) by the nested watershed area (in km²).

one sources.
- Watershed boundaries provided by PFRA (http://www.agr.gc.ca/pfra/gis/gwshed_e.htm)
- Streamflow data provided by Water Survey of Canada (http://www.wsc.ec.gc.ca/hydat/H2O/index_e.cfm) Naturalized streamflow data provided by Alberta Environment.

This map was produced by Dr. Stefan W. Kienzle and Markus Mueller, Department of Geography, Universit of Lethbridge (August 2010).

Enquiries: stefan.kienzle@uleth.ca

Cline River: Streamflow Impacts 2040-2069

 m^3/s

% over/under Base Base = 1961-1990

Cline River: Annual Minimum Streamflow Exceedance Probability: 2020

Simulating impacts of land cover on water yield

Scenario		Mean annual runoff (mm)				
		Lions MC (MAP = 979 mm)		Karkloof MC (MAP = 1 081 mm)		
Α	Baseline land cover	233.4		345.6		
В	Present land use	204.5	(-12.4%)	277.6	(-19.7%)	
C	Baseline + irrigation	180.2	(-22.8%)	319.7	(-7.5%)	
D	Baseline + afforestation	192.9	(-17.4%)	272.0	(-21.3%)	
Е	Baseline + $2 \times$ afforestation	178.4	(-23.6%)	241.6	(-30.1%)	

Mean Monthly Incoming Solar Radiation [MJ m-2 month-1]

Mean Monthly Sunshine Hours

Mean Monthly Relative Humidity [%]

Mean Monthly Wind Speed [km/hr]

