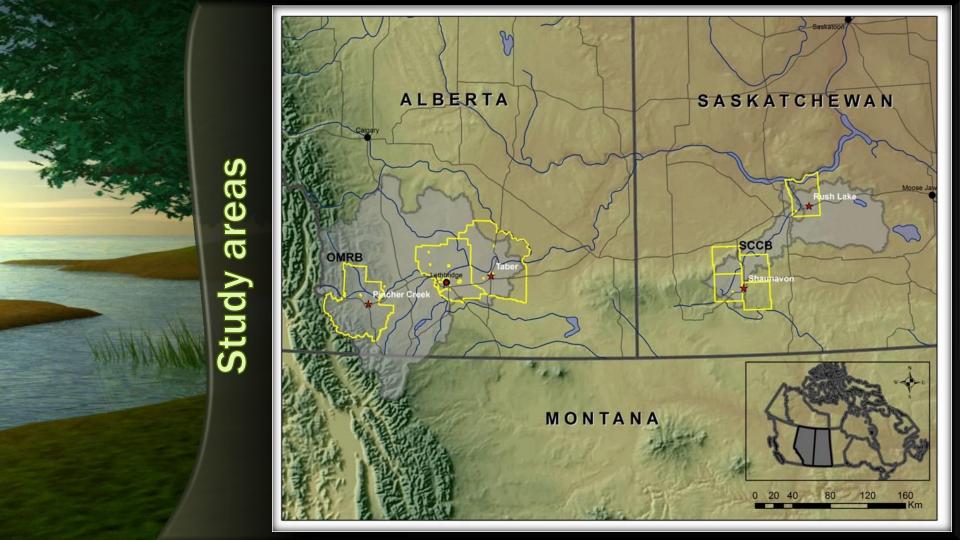


Objective of the VACEA Project

To reduce risks associated with extreme climate events for rural agricultural and indigenous communities.



1. Study Areas Overview

Saskatchewan: Rush Lake, Shaunavon

Alberta: Pincher Creek, Taber/Lethbridge

- 2. Early Findings: CVA & Governance
- 3. Outstanding Extreme Years
- 4. Next Steps

Fieldwork Overview

February - March 2012: Rush Lake, Saskatchewan

May – June 2012: Pincher Creek, Alberta

June - July 2012: Shaunavon, Saskatchewan

July 2012: Taber, Alberta

Blood Tribe: to be conducted

COMMUNITY	CVA	GOVERNANCE
Rush Lake	17	6
Shaunavon	34	18
Pincher Creek	33	20
Taber	16	26
TOTAL	100	70

Total participants =170

1. Study Areas Overview

Saskatchewan: Rush Lake, Shaunavon Alberta: Pincher Creek, Taber

- 2. Early Findings: CVA and Governance
- 3. Outstanding Extreme Years
- 4. Next Steps

Early Findings: CVA

Purpose of VACEA CVAs

The Community Vulnerability Assessment (CVA) has the objective of developing a systematic understanding of the present and past vulnerabilities of rural actors to extreme climate events.

Views on Climate Extremes

 Climate variability attributed to 3 main categories:

-natural climate

-human activity

-religious attributions

Shaunavon. Photo courtesy of Bruno Hernani.

Integration of Traditional Knowledge & Scientific Knowledge

- Observing nature
- Farmers' Almanac
 - Generational knowledge
 - Internet (e.g., Weather Network)
- RCAD: use of witching for water

(Some) Adaptive Practices

- Weather change as a constant: focus on managing own resources
 - -Crop diversification
 - -Minimum till
 - -Rotational grazing water management
 - -Change calving season
- Generational differences in adaptation

Early Findings
Study Areas: Specific Attributes & Issues

Rush Lake, SK	Concerns about PFRA divestiture in dams	
	"Scattered" community (Swift Current / Herbert)	
Shaunavon, SK	Oil industry: Pros & Cons	
	Concern re: lack of health care providers	

Photo courtesy of Bruno Hernani - Rush Lake

Participant suggestions:

- → short-term and long-term scenarios for farm-level planning
- → groundwater mapping
- → research results must be returned to the community!

Early Findings: GOV

Purpose of VACEA Governance:

Understanding how institutions manage water resources and respond to climate variability, hazards and extreme events.

- Funding limitations
- Lack of resources (infrastructure)
- Proactive vs. Reactive Actions

Planning for extreme events

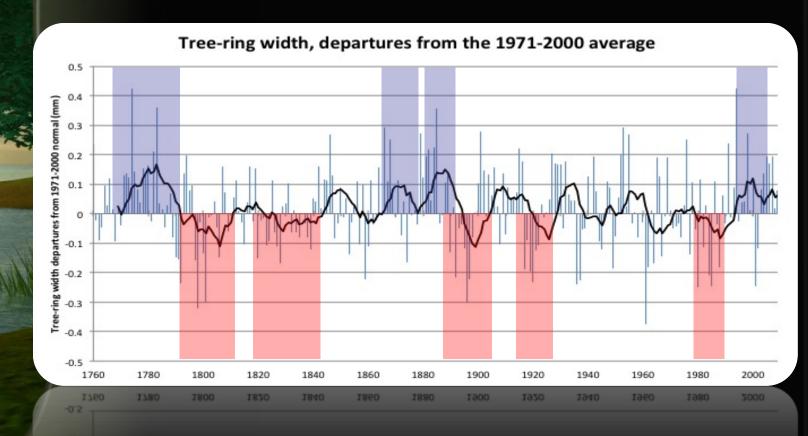
'Out of sight, out of mind' – hindrance

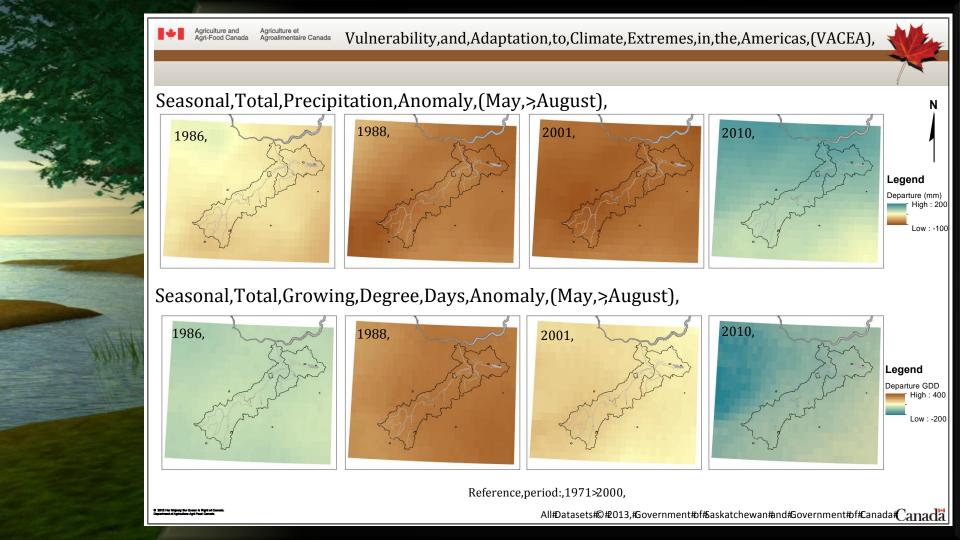
Emergency response and contingency plans

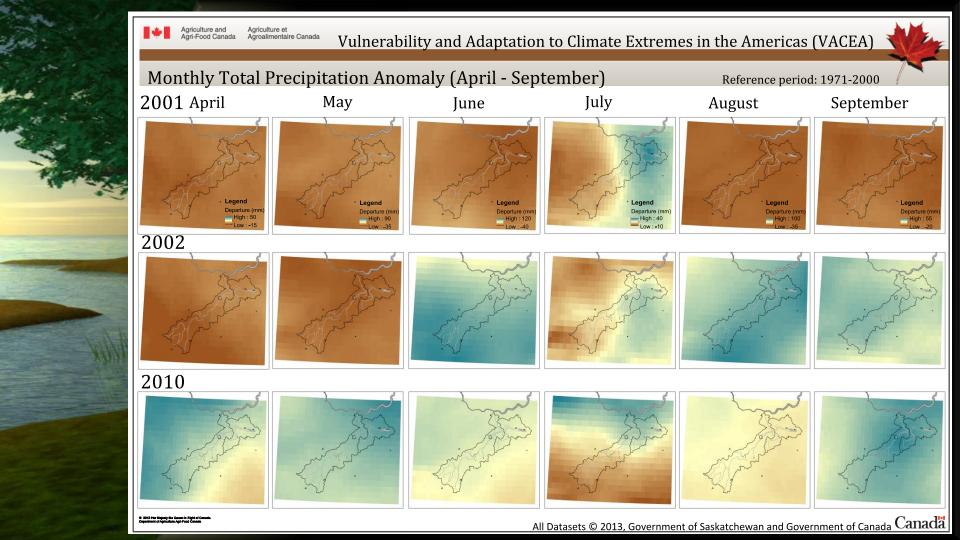
- Having emergency plans mandated/legislated makes a difference (AB vs. SK)
- Separate disaster mandates
- Community cooperation in response (formal + informal)
- Private sector response (e.g. oil companies)
- AB: rural route markings, GPS technology strong

Stakeholder involvement

- Local level organizations promote stakeholders inclusion
- Partnership between local organizations and municipal government Ex. Pincher Creek CVA




Outstanding Extreme Years


Shaunavon		Rush Lake	
Date	Extreme	Date	Extreme
1984/85	drought	1930s	extreme drought
1986	wet	1984/85	drought
1988	extreme drought	1988	drought - water ran out
2002	drought	1997	flood
2010	extreme wet	2001	drought
2011	extreme wet	2002	extreme drought

Outstanding Extreme Years Empirical Cumulative Distribution for Cypress Hills Tree Ring Chronology 1994, 1774 1.0 **Extremely Wet - Severe stress** 0.8 1986 Moderately wet 250 years indicates a wide natural variability of climate **Cumulative Fraction** 1934, 1935 1997 **Normal Coping Range Moderately Dry** 1931, 1938, 1939 0.2 The black curve is ~250 years of Extremely dry - Severe stress Tree Rings, 1760 - 2009 0.0 0.5 0.6 0.8 0.9 1.0 1.1 1.2 1.3 1.4 0.7 **Tree Ring Width Index** Tree Ring Width Index

Long term variability

What will the future hold??

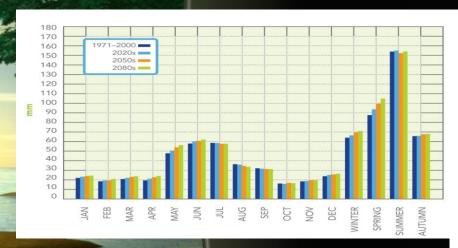
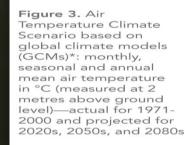
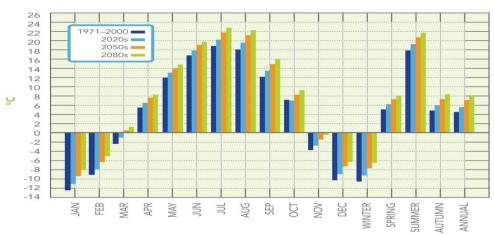




Figure 4. Precipitation Climate Scenario based on global climate models (GCMs)*: total monthly and seasonal precipitation in mm—actual for 1971-2000 and projected for 2020s, 2050s. and 2080s

Next Steps

- Analysis using computer software (NVivo)
- 100-year historic instrumental record
- 1000-year record of natural variability
- Future climate scenarios

Rush Lake, SK

Next Steps

- Upcoming workshops:
- Pincher Creek and Taber
- Shaunavon
- Brazil 5 country collaboration Canada,
 Chile, Columbia, Argentina, Brazil
- www.parc.ca/VACEA
- Twitter: @VACEA1
- Facebook: Vulnerability and Adaptation to Climate Extremes in the Americas (VACEA)

Rush Lake, SK

Comments? Feedback?

If you have any additional comments or experiences you

would like to share...

Please contact our student team at:

(306) 337-2294

Or

VACEAUofR@gmail.com

