The influence of the Pacific Decadal Oscillation on annual floods in the rivers of Western Canada

Sunil Gurrapu^{1, 2}, Jeannine-Marie St. Jacques^{1, 2}, David J Sauchyn^{1, 2}, Kyle R Hodder¹

¹ Department of Geography, University of Regina, Regina, S4S 0A2

² Prairie Adaptation Research Collaborative (PARC)

INTRODUCTION

- Hydrological extremes
- Planning and Design of Infrastructure
- Flood Frequency Analysis (Design Flood)
- Assumes that Peak flows are independent and identically distributed (i.i.d)

Teleconnections

Western Canada

- Pacific Decadal Oscillation
 - Negative PDO produce wet years
- El Niño-Southern Oscillation
 - La Niña events produce wet years

Study Area

- 127 Flow Gauges
 - 119 Natural
 - 8 Naturalised
- 1905 2010
- Minimum 30 years

Data & Methods

DATA

- Observed Streamflow: Water Survey of Canada
- Naturalised Streamflow: Alberta
 Environment
- PDO: Joint Institute for the study of Atmosphere and Ocean (JISAO), University of Washington
- SOI (ENSO): Climate Research Unit (CRU), University of East Anglia

METHODS

- Correlation Analysis
- Quantile-Quantile (Q-Q) Plots
- Permutation Test on Q-Q Plots
- Flood Frequency Analysis
- Flood Ratio

Correlations

PDO vs Annual Peak

Flows

Spearman's Rank

based correlation

Negative

Correlations

• ENSO (SOI) vs. Peak

Flows

• Spearman's Rank

based correlation

Positive

Q-Q Plots

Significant Q-Q plots

Flood Frequency Curves

- PDO stratified Peak Flows
 - Neg.: 1912-25, 1947-76, 2009-13
 - **Pos**.: 1926-46, 1977-2008
- Log-Pearson III (LP3) Fit
- 90 % Confidence Intervals

Flood Frequency Curves

- Overlapped Confidence Intervals
- Approx. 51 % of gauges show
 either clear or partial separation
- Higher magnitude floods in

negative PDO phase

$$Flood Ratio = \frac{Q_{neg}}{Q_{pos}}$$

 Q_{neg} - Flood Quantile in Negative phase

*Q*_{pos} - Flood Quantile in Positive phase

CONCLUSIONS

- Flood risk in western Canada is modified by the PDO
- The stationary climate assumption not valid in Western Canada
- Large-scale climate should be considered during infrastructure planning and design
- Regions with strong teleconnection to large-scale climate may be subject to underestimation of flood risk.
- The extent of this problem in others regions needs to be explored.