Examining Projected Run-off in the South Saskatchewan River Basin in NARCCAP and CCCma RCM Data

Jeannine-Marie St-Jacques, Iuliia Andreichuk,
David Sauchyn and Elaine Barrow
CWRA 2016, Montreal

South Saskatchewan River Basin (SSRB)

Purpose of Study

What will happen to SSRB riverflow by 2041-2070?

Part of the South Saskatchewan River Basin Adaptation to Climate Variability Project

What do NARCCAP RCMs project?

10 RCMs used

RCM/GCM	GFDL	CGCM3	HADCM3	CCSM
CRCM		X		X
ECP2	X			
HRM3	X		X	
MM5I			X	X
RCM3	X	X		

Plus 1 run from CRCM4 - a CORDEX run

Red Deer River Basin with grid cell centres from CRCM4

SSRB Projected Temperature

SSRB Projected Precipitation

"Uncalibrated" Runoff Projection

- total runoff (*mrro*)
- surface runoff (*mrros*)
- 4 functional forms of the aridity index

$$R \approx P - ET = P(1 - ET/P) \approx P(1 - F(\phi))$$

Name	Functional form F(φ)	
Schreiber (1904)	1 – e ^{-φ}	
Oľdekop (1911)	φtanh(φ ⁻¹)	
Budyko (1948)	$[\phi \tanh(\phi^{-1}) (1 - e^{-\phi})]^{0.5}$	
Turc (1954) - Pike (1964)	$1/\sqrt{(0.9+(1/\phi)^2)}$	

following Arora (2002) and González-Zeas et al. (2012)

"Calibrated" SPEI-based Downscaling

SPEI - Vicente-Serrano et al. (2010)

"Calibrated" SPEI-based Downscaling

SPEI – Vicente-Serrano et al. (2010)

mrro works best

mrro results for Red Deer

quantile-quantile mapping bias correction used

mrro-based projection results

mrro hydrograph advances

SPEI-based projection results

Why SPEI-based downscaling so extreme

Conclusions

mrro projects a subtle pattern across SSRB

- Oldman shows most drying
- Red Deer shows increased moisture
- Peak flow shifts to earlier in season

Preliminary SPEI-based downscaling shows much more extreme drying in SSRB

Regardless, SSRB will experience climate change adaptation challenges